Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Metab Brain Dis ; 39(4): 577-587, 2024 Apr.
Article En | MEDLINE | ID: mdl-38305999

Atypical parkinsonism (AP) is a group of complex neurodegenerative disorders with marked clinical and pathophysiological heterogeneity. The use of systems biology tools may contribute to the characterization of hub-bottleneck genes, and the identification of its biological pathways to broaden the understanding of the bases of these disorders. A systematic search was performed on the DisGeNET database, which integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. The tools STRING 11.0 and Cytoscape 3.8.2 were used for analysis of protein-protein interaction (PPI) network. The PPI network topography analyses were performed using the CytoHubba 0.1 plugin for Cytoscape. The hub and bottleneck genes were inserted into 4 different sets on the InteractiveVenn. Additional functional enrichment analyses were performed to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology for a described set of genes. The systematic search in the DisGeNET database identified 485 genes involved with Atypical Parkinsonism. Superimposing these genes, we detected a total of 31 hub-bottleneck genes. Moreover, our functional enrichment analyses demonstrated the involvement of these hub-bottleneck genes in 3 major KEGG pathways. We identified 31 highly interconnected hub-bottleneck genes through a systems biology approach, which may play a key role in the pathogenesis of atypical parkinsonism. The functional enrichment analyses showed that these genes are involved in several biological processes and pathways, such as the glial cell development, glial cell activation and cognition, pathways were related to Alzheimer disease and Parkinson disease. As a hypothesis, we highlight as possible key genes for AP the MAPT (microtubule associated protein tau), APOE (apolipoprotein E), SNCA (synuclein alpha) and APP (amyloid beta precursor protein) genes.


Metabolic Networks and Pathways , Parkinsonian Disorders , Protein Interaction Maps , Systems Biology , Humans , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Metabolic Networks and Pathways/genetics , Protein Interaction Maps/genetics , Gene Regulatory Networks/genetics , Animals
2.
Neurotoxicology ; 88: 57-64, 2022 01.
Article En | MEDLINE | ID: mdl-34728274

High ethanol (EtOH) consumption is a serious condition that induces tremors, alcoholic psychosis, and delirium, being considered a public health problem worldwide. Prolonged EtOH exposure promotes neurodegeneration, affecting several neurotransmitter systems and transduction signaling pathways. Glutamate is the major excitatory amino acid in the central nervous system (CNS) and the extracellular glutamatergic tonus is controlled by glutamate transporters mostly located in astrocytes. Here, we explore the effects of prolonged EtOH exposure on the glutamatergic uptake system and its relationship with astroglial markers (GFAP and S100B), neuroinflammation (IL-1ß and TNF-α), and brain derived neurotrophic factor (BDNF) levels in the CNS of adult zebrafish. Animals were exposed to 0.5% EtOH for 7, 14, and 28 days continuously. Glutamate uptake was significantly decreased after 7 and 14 days of EtOH exposure, returning to baseline levels after 28 days of exposure. No alterations were observed in crucial enzymatic activities linked to glutamate uptake, like Na,K-ATPase or glutamine synthetase. Prolonged EtOH exposure increased GFAP, S100B, and TNF-α levels after 14 days. Additionally, increased BDNF mRNA levels were observed after 14 and 28 days of EtOH exposure, while BDNF protein levels increased only after 28 days. Collectively, our data show markedly brain astroglial, neuroinflammatory and neurotrofic responses after an initial impairment of glutamate uptake following prolonged EtOH exposure. This neuroplasticity event could play a key role in the modulatory effect of EtOH on glutamate uptake after 28 days of continuous exposure.


Brain/drug effects , Ethanol/adverse effects , Gliosis/chemically induced , Glutamic Acid/metabolism , Neuroinflammatory Diseases/chemically induced , Animals , Brain/metabolism , Brain/pathology , Brain-Derived Neurotrophic Factor/metabolism , Female , Gliosis/pathology , Interleukin-1beta/metabolism , Male , Neuroinflammatory Diseases/pathology , Reverse Transcriptase Polymerase Chain Reaction , Sodium-Potassium-Exchanging ATPase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Zebrafish , Zebrafish Proteins/metabolism
3.
Biomarkers ; 26(2): 146-151, 2021 Mar.
Article En | MEDLINE | ID: mdl-33435755

AIM: The aim of this study was to evaluate the hepatic and circulating expression of miR-155, miR-122 and miR-217 in a model of chronic exposure to ethanol in adult zebrafish. METHODS: Wild-type adult zebrafish were divided into two groups (n = 281): an EG (exposed to 0.5% v/v Ethanol in aquarium water) and a CG (without ethanol). After 28 days the animals were euthanized, followed by histopathological analysis, quantification of lipids, triglycerides and inflammatory cytokines in liver tissue. miR-155, miR-122 and miR-217 gene expression was quantified in liver tissue and serum. RESULTS: We observed hepatic lesions and increased accumulation of hepatic lipids in the EG. The expression of il-1ß was higher in the EG, but there were no differences in il-10 and tnf-α between groups. In the liver, expression of miR-122 and miR-155 was higher in the EG. The circulating expression of miR-155 and miR-217 was significantly higher in the EG. CONCLUSION: Chronic exposure to ethanol in zebrafish leads to altered hepatic and circulating expression of miR-155, miR-122 and miR-217. This confirms its potential as a biomarker and therapeutic target.


Ethanol/pharmacology , Liver Diseases, Alcoholic/genetics , Liver/drug effects , MicroRNAs/genetics , Animals , Biomarkers/metabolism , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Male , MicroRNAs/metabolism , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Zebrafish
4.
Clin Exp Gastroenterol ; 13: 351-368, 2020.
Article En | MEDLINE | ID: mdl-32982365

BACKGROUND/AIM: The interactions between the gut and liver have been described in the progression of non-alcoholic steatohepatitis (NASH). The aim of this study was to develop an experimental nutritional model of NASH simulating metabolic changes occurring in humans. MATERIALS AND METHODS: Adult male Sprague Dawley rats were randomized into two groups: controls (standard diet) and intervention (high-fat and choline-deficient diet) for 16 weeks, each experimental group with 10 animals. Biochemical analysis, hepatic lipid content, microRNAs, inflammatory, gut permeability markers and gut microbiota were measured. RESULTS: Animals in the intervention group showed significantly higher delta Lee index (p=0.017), abdominal circumference (p<0.001), abdominal adipose tissue (p<0.001) and fresh liver weight (p<0.001), as well as higher serum levels of alanine aminotransferase (p=0.010), glucose (p=0.013), total cholesterol (p=0.033), LDL cholesterol (p=0.011), and triglycerides (p=0.011), and lower HDL cholesterol (p=0.006) compared to the control group. Higher TLR4 (p=0.041), TLR9 (p=0.033), MyD88 (p=0.001), Casp1 (p<0.001), NLPR3 (p=0.019), liver inflammation index interleukin (IL)-1ß/IL10 (p<0.001), IL6/IL10 (p=0.002) and TNFα/IL10 (p=0.001) were observed in the intervention group, and also lower permeability markers Ocln (p=0.003) and F11r (p=0.041). Gene expression of miR-122 increased (p=0.041) and miR-145 (p=0.010) decreased in the intervention group. Liver steatosis, inflammation and fibrosis, along with collagen fiber deposition increment (p<0.001), were seen in the intervention group. Regarding gut microbiota, Bray-Curtis dissimilarity index and number of operational taxonomic units were significantly different (p<0.001) between the groups. Composition of the gut microbiota showed a significant correlation with histopathological score of NAFLD (r=0.694) and index IL-1ß/IL-10 (r=0.522). CONCLUSION: This experimental model mimicking human NASH demonstrated gut and liver interaction, with gut microbiota and intestinal permeability changes occurring in parallel with systemic and liver inflammation, miRNAs regulation and liver tissue damage.

5.
J Am Coll Nutr ; 39(2): 163-170, 2020 02.
Article En | MEDLINE | ID: mdl-31241423

Objective: Alcoholic liver disease (ALD) is among the leading causes of death from liver disease. Among the factors involved in its pathogenesis are inflammation and increased intestinal permeability. The aim of this study was to assess the effect of Lactobacillus rhamnosus GG (LGG) on hepatic lipid accumulation, activation of inflammasomes, and gut permeability markers in experimental model of ALD with zebrafish.Methods: An experiment was conducted to assess the effective LGG dose capable of promoting intestinal colonization. Animals were divided into three groups (n = 64/group): ethanol group (E), ethanol + probiotic group (EP), and control group (C). Groups E and EP were exposed to 0.5% ethanol concentration for 28 days. At the end of this period, animals were euthanized, and livers were collected for Oil Red staining and assessment of the inflammasome system. Intestines were collected for evaluation of gut permeability markers.Results: The dose of 1.55 × 106 UFC LGG/fish/d promoted intestinal colonization. Group EP presented lower hepatic lipid accumulation, lower il-1ß expression, and higher cldn15a expression when compared to group E.Conclusions: Supplementation with LGG was protective for hepatic steatosis in ALD model. In addition, LGG influenced the modulation of the inflammatory response and markers of gut permeability, improving the gut barrier structure.


Inflammasomes/physiology , Intestinal Mucosa/metabolism , Lacticaseibacillus rhamnosus/physiology , Liver Diseases, Alcoholic/therapy , Probiotics/therapeutic use , Zebrafish , Animals , Disease Models, Animal , Ethanol/administration & dosage , Fatty Liver/therapy , Gastrointestinal Microbiome/physiology , Gene Expression/physiology , Inflammasomes/genetics , Lacticaseibacillus rhamnosus/growth & development , Lipid Metabolism/physiology , Liver/metabolism , Permeability
...